Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" Ministry of Health of the Russian Federation

WORKING PROGRAM

Name of the academic discipline: ORGANIC CHEMISTRY

Specialty: 33.05.01 PHARMACY

Qualification: PHARMACIST

Department: GENERAL CHEMISTRY

Mode of study: FULL-TIME

' Labor intensity of the academic discipline: 396 academic hours

Nizhny Novgorod 2021 The working program has been developed in accordance with the Federal State Educational Standard for the specialty 33.05.01 PHARMACY approved by Order of the Ministry of Science and Higher Education of the Russian Federation No. 219 dated of March 27, 2018.

Developers of the working program:

Zhdanovich I.V, Ph.D., Associate Professor,
 Gordetsov A.S., Doctor of Chemistry, Professor, Head of the Department of General Chemistry.

The program was reviewed and approved at the department meeting (protocol No.1, 26.08.2021)

Head of the Department of General Chemistry, Doctor of Chemistry, Professor Gordetsov A.S.

/Gordetsov A.S./

- August 26, 2021

AGREED Deputy Head of EMA ph.d. of biology

(Bon Lovtsova L.V.

(signature)

August 26, 2021

2

1. GOALS AND OBJECTIVES OF MASTERING THE DISCIPLINE

The purpose of the discipline is to prepare students for the assimilation of biomedical and special disciplines, for which, on the basis of modern scientific ideas and in accordance with the requirements of the Federal State Educational Standard of Higher Professional Education, to form knowledge about the patterns of chemical behavior of organic substances and about the relationship between the properties of compounds with their chemical structure, participation in the formation the following competencies:

UK-1: The ability to carry out a critical analysis of problem situations based on a systematic approach, to develop an action strategy

GPC-1: the ability to use basic biological, physico-chemical, chemical, mathematical methods for the development, research and examination of medicines, the manufacture of medicines.

The tasks of the discipline are:

- study by students of the properties of organic substances;

- acquisition and consolidation of knowledge in the field of synthesis and analysis of organic compounds;

- formation of the ability to use modern methods for establishing the structure of organic compounds;

- acquiring the ability to work in a chemical laboratory using special equipment;

- formation of students' skills in studying scientific chemical literature;

- formation of students' skills for solving problematic and situational problems.

As a result of mastering the discipline, the student must:

Know:

1) principles of classification and nomenclature of the main classes of organic compounds;

2) types of isomerism of organic substances;

3) methods of obtaining and reactivity of the most important organic compounds;

4) chemical and physical methods for the identification of organic compounds;

5) rules for working with organic substances.

Be able to:

1) on the basis of the structure of substances, assign them to certain classes;

2) compile the names of organic compounds using the IUPAC nomenclature rules; build structural formulas of substances by their names;

3) depict the structural and spatial formulas of isomers, name the latter using D, L-, R, S- and E, Z-nomenclature systems;

4) predict methods of obtaining and chemical properties of compounds based on their structure;

5) establish the structure of substances based on their chemical properties and spectral characteristics;

6) describe in general terms and with specific examples the mechanisms of radical, electrophilic and nucleophilic substitution;

7) perform qualitative reactions to functional groups;

8) isolate and purify organic substances, determine their purity.

Possess:

- 1) the skills of safe work in a chemical laboratory, conducting experimental work using chemical glassware and equipment;
- 2) choose the optimal routes for the synthesis of given organic compounds;
- 3) skills of independent work with educational, scientific and reference literature;
- 4) find and use the necessary information to solve synthetic problems.

2. osition of the academic discipline in the structure of the General Educational Program of Higher Education (GEP HE) of the organization

- 1.1. The discipline Organic chemistry refers to the core part (or *the part formed by the participants of educational relations*) of Block 1 of GEP HE (Academic discipline index). The discipline is studied in III-IV semesters.
- 1.2. To study the discipline, knowledge, skills and abilities are required that are formed by previous disciplines: general and inorganic chemistry, physics, computer science, mathematics, physical and colloidal chemistry.
- 1.3. The study of the discipline is necessary for the knowledge, skills and abilities formed by the subsequent disciplines of the professional cycle: biochemistry, toxicological chemistry and such professional disciplines as biological chemistry, pharmaceutical chemistry, pharmacognosy, toxicological chemistry.

3. RESULTS OF MASTERING THE DISCIPLINE AND INDICATORS OF ACHIEVING COMPETENCES:

The process of studying the discipline is aimed at the formation of the following universal (UC), general professional (GPC):

		The content of	Code and name of the competence acquisition metric				
№ п/п	r	the competence (or its part)	know	be able to	possess	Evaluation tools	
1.	UC-1	the ability to	How to put	Analyze	The methods	Tests,	

					-	
		carry out a	into practice	socially	of	multiply
		critical	the methods	significant	humanitarian	choice
		analysis of	of	problems and	natural	tests,
		problem	humanitarian,	processes	sciences,	colloquia,
		situations	natural		biomedical	credits,
		based on a	sciences,		and clinical	exams
		systematic	biomedical		sciences	
		approach, to	and clinical			
		develop an	sciences in			
		action	various types			
		strategy	of			
		strategy	professional			
			and social			
			activities			
2.	GPC-1	the chility to use		Work with	Abili	Tests,
۷.	UrC-1	the ability to use basic biological,	How to apply the basic	scientific	ty and	multiply
		physico-	methods,	literature	willingness	choice tests,
		chemical,	methods and	analyze	to	colloquia,
		chemical,	means of	information,	participate	credits,
		mathematical	obtaining	conduct	in the	exams
		methods for the	storage,	searches, turn	formulation	
		development,	processing of	what is read into	of scientific	
		research and	scientific and	tool for solving	problems	
		examination of medicines, the	professional information;	professional problems	and their experimenta	
		manufacture of	receive	Use the rules for	1	
		medicines	information	constructing	implementat	
			from various	chemical	ion	
			sources,	formulas,	Com	
			including using	graphs, tables	puter	
			modern	using	programs for	
			computer	appropriate	constructing	
			tools, network	computer	chemical	
			technologies, databases and	programs,	and stereochemi	
			databases and knowledge	including for creating	cal formulas	
			KIIUWICUge	computer	of organic	
				presentations.	compounds	
				1	and other	
					types of	
					illustrative	
					material.	

4. Sections of the academic discipline and competencies that are formed when mastering them

N⁰	Compete	Section name	The content of the section in teaching units
Π/Π	nce code	of the discipline	The content of the section in teaching units
	UC-1	General concepts of	1.1. Definition of organic chemistry. Development of ideas
	GPC-1	organic chemistry.	about the structure of organic compounds. Theory of the
1.	0101	Structure and	structure of A.M. Butlerov, its philosophical essence and
		reactivity of	development at the present stage. Organic chemistry as a
		hydrocarbons.	basic discipline in the system of pharmaceutical education.

r - 1		
	Spatial structure of	1.2. Classification of organic compounds: functional group
	organic compounds.	and structure of the carbon skeleton as classification features
	Fundamentals of	of organic compounds. Main classes of organic compounds.
	spectroscopy.	1.3. Nomenclature of organic compounds. Basic principles of
		IUPAC nomenclature. The use of radical-functional
		nomenclature for certain classes of organic compounds.
		1.4. Types of chemical bonds in organic compounds.
		Covalent σ - and π -bonds. The structure of double (C=C,
		C=O) and triple (C=C) bonds; their main characteristics
		(length, energy, polarity, polarizability).
		1.5. Mutual influence of atoms in the molecules of organic
		compounds and methods of its transmission. inductive effect.
		mesomeric effect.
		1.6. Classification of organic reactions: addition, substitution,
		elimination, rearrangement. The concept of the reaction
		•
		mechanism - ionic (electrophilic, nucleophilic), free radical.
		The structure of intermediate active particles (carbocations,
		carboanions, free radicals). Transition state.
		1.7. Classification of organic reactions: addition,
		substitution, elimination, rearrangement. The concept of the
		reaction mechanism - ionic (electrophilic, nucleophilic), free
		radical. The structure of intermediate active particles
		(carbocations, carboanions, free radicals). Transition state.
		1.8. Alkanes. Nomenclature. Structural isomerism. physical
		properties. Spectral characteristics of alkanes. Ways to get.
		Natural sources of hydrocarbons.
		Radical substitution reactions, mechanism. Methods for the
		formation of free radicals. The structure of free radicals and
		the factors that determine their stability. Regioselectivity of
		radical substitution. Isomerization, oxidation and
		dehydrogenation of alkanes. Vaseline oil, paraffin.
		1.9. Cycloalkanes. Nomenclature. Ways to get. small cycles.
		Electronic structure of cyclopropane (σ -bonds). Features of
		the chemical properties of small cycles (addition reactions).
		normal cycles. substitution reactions. Conformations of
		cyclohexane. Energy difference of cyclohexane
		conformations (armchair, bath, half-chair). Axial and
		equatorial connections.
		1.10. Alkenes. Nomenclature. Isomerism. physical properties.
		Spectral characteristics of alkenes. Ways to get. Electrophilic
		addition reactions, mechanism. The structure of carbocations.
		Spatial orientation of the connection. Addition of halogens,
		hydrohalogenation, hydration and the role of acid catalysis.
		Markovnikov's rule, its modern interpretation (static and
		dynamic approaches). Substitution reactions to the allyl
		position. Oxidation of alkenes (hydroxylation, ozonation,
		epoxidation). catalytic hydrogenation. Identification of
		alkenes.
		1.11. Alkynes. Nomenclature. Isomerism. physical properties.
		Spectral characteristics of alkynes. Ways to get.
		Electrophilic addition reactions (hydrohalogenation, addition
		of halogens). Hydration of acetylene (Kucherov reaction).
		Comparison of the reactivity of alkynes and alkenes in
		electrophilic addition reactions. Substitution reactions

	1	1	
1			(formation of acetylides) as a consequence of the CH-acid
			properties of alkynes. Cyclotrimerization of acetylene.
			Alkyne oxidation. Alkyne identification.
			1.12. Conjugation (π -, π -conjugation). Conjugated open
			circuit systems. Conjugation energy.
			Conjugated dienes (butadiene, isoprene). Electrophilic
			addition reactions (hydrohalogenation, addition of halogens).
			Peculiarities of addition in the series of conjugated dienes.
			1.13. Conjugation (π -, π -conjugation). Conjugated open
			circuit systems. Conjugation energy.
			Conjugated dienes (butadiene, isoprene). Electrophilic
			addition reactions (hydrohalogenation, addition of halogens).
			Peculiarities of addition in the series of conjugated dienes.
			1.14. Mononuclear arenas. Nomenclature. Ways to get.
			aromatic properties. Spectral characteristics of aromatic
			hydrocarbons. Electrophilic substitution reactions,
			mechanism, π - and σ -complexes. Halogenation, nitration,
			sulfonation, alkylation, acylation of arenes. Influence of
1			electron-donating and electron-withdrawing substituents on
			the direction and rate of the electrophilic substitution reaction.
			Orientants of the I and II kind, p,π -conjugation. Coordinated
			and non-coordinated orientation. Chemical properties of
			benzene homologues. Reactions proceeding with loss of
			aromaticity: hydrogenation, addition of chlorine. Oxidation.
			Benzene, toluene, xylenes. Arena identification.
			1.15. Condensed arenas. Naphthalene, aromatic properties.
			Electrophilic substitution reactions (sulfonation, nitration)
			Orientation of substitution in the naphthalene series.
			Recovery (tetralin, decalin) and oxidation (naphthoquinones).
			Anthracene, phenanthrene; aromatic properties. Recovery,
			oxidation.
			1.16. Spatial structure of organic compounds (basics of
			stereochemistry). Configuration and conformation are the
			most important concepts of stereochemistry. Elements of
			symmetry of molecules (axis, plane, center) and symmetry
			operations (rotation, reflection). Chiral and achiral molecules.
			Asymmetric carbon atom as a chiral center. Methods for
			depicting the spatial structure of molecules.
1			Stereoisomerism of molecules with one center of chirality (enantiomerism). Glyceraldehyde as a configuration standard.
1			Fisher projection formulas. Optical activity of enantiomers.
1			
1			Polarimetry as a method for studying optically active
1			compounds. Relative and absolute configurations. D,L- and
1			R,S-systems of stereochemical nomenclature. Racemates. Stereoisomerism of molecules with two or more centers of
1			
1			chirality (enantiomerism, σ - and π -diastereomerism). E,Z-
1			stereochemical series. The difference between the properties
1			of enantiomers and diastereomers. Methods for separating
1			racemates.
1			Conformations. The emergence of conformations as a result
1			of rotation around σ -bonds. Factors that hinder rotation.
<u> </u>			Relationship of spatial structure with biological activity.
2.	UC-1	The main classes of	2.1. Halogen derivatives of hydrocarbons. Classification
		mono- and	depending on the number and arrangement of halogen atoms,

GPC-1	polyfunctional	the nature of the hydrocarbon radical. Nomenclature. physical
UPC-1	organic compounds.	properties.
	organie compoundo.	2.2. haloalkanes and halocycloalkanes. Ways to get.
		Characterization of carbon-halogen bonds (length, energy,
		polarity, polarizability). Reactions of nucleophilic
		substitution; the mechanism of mono- and bimolecular
		reactions, their stereochemical orientation. Transformation of
		halogen derivatives of hydrocarbons into alcohols, ethers and
		esters, sulfides, amines, nitriles. nitro derivatives.
		Elimination reactions: dehydrohalogenation, dehalogenation.
		Zaitsev's rule. Competitiveness of nucleophilic substitution
		and elimination reactions.
		2.3. Halogenalkenes. Allyl and vinyl halides, causes of
		different reactivity in nucleophilic substitution reactions.
		2.4. Halogenarenes. Nucleophilic substitution of the halogen
		in the nucleus. The difference in the mobility of the halogen
		in the aromatic ring and the side chain. Deactivating and
		orienting effect of halogen in electrophilic substitution reactions.
		Ethyl chloride, carbon tetrachloride, chloroform, iodoform,
		chlorobenzene, benzyl chloride.
		Identification of halogen derivatives of hydrocarbons.
		2.5. Alcohols. Classification according to the number and
		arrangement of hydroxyl groups, according to the nature of
		the radical. Nomenclature. physical properties. Spectral
		characteristics of alcohols. Ways to get.
		2.6. Kacidic properties: the formation of alcoholates. Main
		properties: formation of oxonium salts. Intermolecular
		hydrogen bonds as a consequence of the amphoteric nature of
		alcohols. Influence of intermolecular association on physical
		properties and spectral characteristics.
		2.7. Nucleophilic and basic properties of alcohols: obtaining haloalkanes, ethers and esters. Intermolecular and
		intramolecular dehydration of alcohols. Alcohol oxidation.
		2.8. Polyhydric alcohols, features of their chemical behavior.
		Unsaturated alcohols; prototropic tautomerism of enols.
		Eltekov rearrangement.
		Methanol, ethanol, propanols, butanols, benzyl alcohol,
		ethylene glycol, glycerin, glycerol trinitrate. Identification of
		alcohols.
		2.9. Phenols. Classification according to the number of
		hydroxyl groups. Nomenclature. physical properties. Spectral
		characteristics of phenols. Ways to get.
		Acidic properties: formation of phenolates. Nucleophilic
		properties of phenol: obtaining ethers and esters. Oxidation of
		phenols. Electrophilic substitution reactions in phenols: halogenation,
		nitration, sulfonation, nitrosation, carboxylation,
		hydroxymethylation.
		Phenol; 2,4,6-trinitrophenol; α - and β -naphthols;
		pyrocatechin, resorcinol, hydroquinone.
		Identification of phenolic compounds.
		2.10. Ethers. Nomenclature. physical properties. Ways to
		get. Basic properties, formation of oxonium salts.

 1	1	
		Nucleophilic cleavage with hydrohalic acids. Oxidation.
		Introduction to organic hydroperoxides and peroxides.
		Diethyl ether, anisole, phenetol.
		The concept of thioalcohols and thioethers.
		2.11. carbonyl compounds. Nomenclature. physical
		properties. Spectral characteristics. Methods for obtaining
		aliphatic and aromatic aldehydes and ketones.
		2.12. Nucleophilic addition reactions, mechanism. Influence
		of the radical on the reactivity of the carbonyl group. Water
		connection. Factors determining the stability of hydrated
		forms. Addition of alcohols, sodium hydrosulfite, hydrogen
		cyanide, organometallic compounds (formation of primary,
		secondary and tertiary alcohols). Polymerization of
		aldehydes; paraform, paraldehyde.
		2.13. Addition-cleavage reactions: the formation of imines
		(Schiff bases), oximes, hydrazones, arylhydrazones,
		semicarbazones: their use for the identification of aldehydes
		and ketones. Interaction of formaldehyde with ammonia
		(hexamethylenetetramine).
		2.14. Reactions involving α -CH-acid center. Condensations
		of aldol and crotonic types, the role of acid and base catalysis.
		Haloform reaction, iodoform test.
		2.15. Oxidation and reduction of aldehydes and ketones. The
		difference in the ease of oxidation of aldehydes and ketones,
		Popov's rule. catalytic hydrogenation.
		Formaldehyde (formalin), acetaldehyde, chloral (chloral
		hydrate), acrolein, benzaldehyde, acetone, cyclohexanone,
		acetophenone, benzophenone.
		Identification of aldehydes and ketones.
		2.16. Carboxylic acids. Classification. Nomenclature.
		physical properties. Spectral characteristics. Ways to get.
		monocarboxylic acids. The structure of the carboxyl group
		and the carboxylate ion as p,π -conjugated systems. Acid
		properties of carboxylic acids; salt formation. Dependence of
		acidic properties on the nature of the radical.
		Reactions of nucleophilic substitution at the sp2-hybridized
		carbon atom; mechanism. Formation of functional derivatives
		of carboxylic acids. Acylation reactions. Anhydrides and acid
		halides as active acylating agents.
		2.17. Reactions involving the hydrocarbon radical of
		carboxylic acids. Halogenation according to Gell-Volhard-
		Zelinsky. Use of α -halogenated acids for the synthesis of α -
		hydroxy, α -amino-, α , β -unsaturated acids. Formic, acetic,
		propionic, butyric, isovaleric, acrylic, benzoic acids.
		2.18. Esters. Receipt. Esterification reaction, the need for acid
		catalysis. Acid and alkaline hydrolysis of esters.
		Interesterification. Ammonolysis of esters.
		2.19. Amides of carboxylic acids. Receipt. The structure of
		the amide group. Acid-base properties of amides. Hydrolysis
		of amides in acidic and alkaline media. Cleavage by
		hypobromites. Dehydration to nitriles. Nitriles: obtaining,
		properties (hydrolysis, recovery); acetonitrile. Hydrazides of
		carboxylic acids.
		2.20. Carbonic acid and its derivatives. Carbamide:

	r		
			preparation, properties (formation of salts, decomposition by
			nitrous acid and hypohalogenites, formation of biuret,
			hydrolysis). Ureido acids and ureides of acids.
			2.21. Dicarboxylic acids; properties as bifunctional
			compounds. Specific properties of dicarboxylic acids:
			increased acidity of the first homologues; decarboxylation of
			oxalic and malonic acids, formation of cyclic anhydrides
			(succinic, glutaric, maleic acids). Phthalic acid, phthalic
			anhydride, phthalimide. Phenolphthalein.
			2.22. Triacylglycerides (fats, oils). Higher fatty acids as
			structural components of triacylglycerides (palmitic, stearic,
			oleic, linoleic, linolenic). The relationship of the consistency
			of triacylglycerides with the structure of acids. Hydrolysis,
			hydrogenation, oxidation. Analytical characteristics of fats
			and oils (iodine number, saponification number). Soaps and
			their properties.
			Phospholipids (lecithins, cephalins): structure, relation to
			hydrolysis, biological significance. Waxes: structure,
			properties as esters, use in medicine.
			2.23. Amines. Classification. Nomenclature. physical
			properties. Spectral characteristics of amines. Methods for
			obtaining aliphatic and aromatic amines.
			Acid-base properties, formation of salts. Dependence of the
			basic properties of amines on the structure of hydrocarbon
			radicals and the solvation effect.
			nucleophilic properties. Alkylation of amines. Acylation as a
			way to protect the amino group. Opening of the α -oxide ring
			by amines, formation of amino alcohols. Reactions of
			primary, secondary and tertiary aliphatic and aromatic amines
			with nitrous acid. Carbylamin reaction - an analytical test for
			the primary amino group.
			The activating effect of the amino group on the reactivity of
			the aromatic nucleus. Halogenation, sulfonation, nitration of
			aromatic amines.
			Methylamine, dimethylamine, trimethylamine, aniline, N-
			methylanils, N,N-dimethylanilines, toluidines, fenethidines.
			Amine identification.
			2.24. Diazo and azo compounds. Nomenclature. Diazotized
			reaction. conditions for conducting. The structure of
			diazonium salts, tautomerism.
			Reactions of diazonium salts with nitrogen release. Synthetic
			possibilities of the reaction: replacement of a diazo group by a
			hydroxy group, an alkoxy group, hydrogen, halogens, a cyano
			group.
			Reactions of diazonium salts without nitrogen release:
			formation of azo compounds, triazenes, phenylhydrazines.
			Azo coupling as an electrophilic substitution reaction.
			Coupling conditions with amines and phenols. Use of the azo
			coupling reaction in pharmacoanalysis.
	UC-1	Heterofunctional and	3.1.HYDROXY ACIDS OF THE ALIPHATIC SERIES. THE MAIN WAYS TO
	GPC-1	natural compounds	GET. CHEMICAL PROPERTIES AS HETEROFUNCTIONAL COMPOUNDS.
3.		(carbohydrates,	Specific reactions A B-, Γ -hydroxy acids, lactones, lactides.
		terpenes, steroids).	DECOMPOSITION OF A-HYDROXY ACIDS UNDER THE ACTION OF STRONG
		• · /	MINERAL ACIDS. MONOBASIC (LACTIC), DIBASIC (TARTARIC, MALIC)

	AND TRIBASIC (CITRIC) ACIDS.
	3.2. Phenolic acids. Salicylic acid, production method.
	Chemical properties as a heterofunctional compound. Esters
	of salicylic acid used in medicine: methyl salicylate, phenyl
	salicylate, acetylsalicylic acid, p-aminosalicylic acid (PASA).
	3.3. Oxoacids. Ways to get. Chemical properties as
	heterofunctional compounds. Specific properties depending
	on the location of functional groups. Keto-enol tautomerism
	of β -dicarbonyl compounds.
	Aldehydo- (glyoxalic) and ketone acids (pyruvic,
	acetoacetic).
	3.4. Amino acids. Ways to get. Chemical properties as
	heterofunctional compounds. Specific reactions of α -, β -, γ -
	amino acids. Lactams, diketopiperazines. β -alanine, γ -
	aminobutyric acid (aminalon).
	α -Amino acids, peptides, proteins. The structure and
	classification of α -amino acids that make up proteins.
	Stereoisomerism. Chemical properties as heterofunctional
	compounds. Bipolar structure, formation of chelate
	compounds. Bipolai structure, formation of cherate compounds. Reactions about nitrous acid, formaldehyde; their
	use in the quantitative analysis of amino acids.
	Structural features of the peptide group. Primary structure of
	peptides and proteins. Partial and complete hydrolysis.
	Introduction to peptide synthesis and amino acid sequence
	analysis in peptides and proteins.
	3.5. n-Aminobenzoic acid; its derivatives used in medicine:
	anestezin, novocaine, novocainamide.
	3.6. Csulfanilic acid. Preparation, chemical properties.
	Sulfanilamide (streptocide), production method. The general
	principle of the structure of sulfanilamide drugs.
	3.7. Amino alcohols and aminophenols. Biogenic amines: 2-
	aminoethanol (colamine), choline, acetylcholine, epinephrine,
	norepinephrine. p-Aminophenol and its derivatives used in
	medicine: phenacetin, paracetamol.
	3.8. Carbohydrates. General characteristics, distribution in
	nature, biological significance.
	3.9. Monosaccharides. Classification (aldoses and ketoses,
	pentoses and hexoses).
	Stereoisomerism. D and L-stereochemical series. Open and
	cyclic forms. Cyclo-oxo-tautomerism. Oxide ring size
	(furanose and pyranose). Haworth formulas; α - and β -
	anomers. Mutarotation. Conformations; the most stable
	conformations of the most important D-hexopyranoses.
	3.10. Chemical properties of monosaccharides. Reactions
	involving alcohol hydroxyl groups (acylation, alkylation,
	phosphorylation). Reactions of hemiacetal hydroxyl: reducing
	properties of addoses, formation of glycosides. Types of
	glycosides; their relation to hydrolysis. epimerization of
	monosaccharides.
	Oxidation of monosaccharides. Obtaining glyconic, glycaric
	and glycuronic acids. Recovery of monosaccharides to
	polyols (aldit).
	Qualitative reactions for the detection of hexoses and
	 pentoses. Pentoses:

		1	
			D-xylose, D-ribose, D-2-deoxyribose, D-arabinose. Hexoses:
			D-glucose, D-galactose, D-mannose, D-fructose. Amino
			sugars: D-glucosamine, D-galactosamine. Alditol: D-sorbitol,
			xylitol. D-glucuronic, D-galacturonic, D-gluconic acids.
			Ascorbic acid (vitamin C).
			3.11. Oligosaccharides. The principle of the structure;
			nomenclature.
			Reducing and non-reducing disaccharides. Tautomerism of
			reducing disaccharides. relation to hydrolysis. Maltose,
			cellobiose, lactose, sucrose.
			3.12. Polysaccharides. The principle of construction. Homo-
			and heteropolysaccharides. Esters and ethers of
			polysaccharides: acetates, nitrates. The ratio of
			polysaccharides and their esters to hydrolysis.
			Starch (amylose, amylopectin), cellulose, glycogen, dextrans,
			inulin, pectins.
			· 1
			3.13.Terpenes and terpenoids. Isoprene rule. Classification
			according to the number of isoprene units and according to
			the number of cycles.
			Monoterpenes. Acyclic (citral and its isomers), monocyclic
			(limonene, terpinolene), bicyclic (α -pinene, borneol,
			camphor) terpenes. Synthesis of camphor from α -pinene and
			bornyl acetate. Menthane and its derivatives used in
			medicine: menthol, validol, terpinhydrate
			Diterpenes: retinol (vitamin A), retinal. Tetraterpenes
			(carotenoids): β -carotene (provitamin A).
			3.14. Steroids. The structure of gonan
			(cyclopentanperhydrophenanthrene). Nomenclature.
			Stereoisomerism: cis-, trans-joint of cyclohexane rings. α , β -
			Stereochemical nomenclature, 5 α -, and 5 β -series. Ancestral
			hydrocarbons of steroids: estran, androstane, pregnane,
			cholan, cholestane.
			Cholestan derivatives (sterols): cholesterol, ergosterol;
			vitamin D2. Cholan derivatives (bile acids): cholic and
			deoxycholic acids, paired bile acids. Androstan derivatives
			(androgenic substances): testosterone, androsterone. Estrane
			derivatives (estrogenic substances): estrone, estradiol, estriol.
			Pregnane derivatives (corticosteroids): deoxycorticosterone,
			cortisone, hydrocortisone, prednisolone. Aglycones of cardiac
			glycosides: digitoxygenin, strophanthidine. The general
			principle of the structure of cardiac glycosides.
			Chemical properties of steroids due to functional groups: the
			formation of derivatives of hydroxyl, carbonyl, carboxyl
			groups; properties of unsaturated steroids.
	LIC 1	Heterocyclic	4.1. Five-membered aromatic heterocycles with one
	UC-1	•	•
	GPC-1	compounds. Nucleic acids. Alkaloids.	heteroatom: pyrrole, furan, thiophene as π -excess systems.
		acius. Aikaiolus.	Electronic structure. The concept of a heteroatom of the
			pyrrole type. Acidophobicity of pyrrole and furan. Acid-base
4.			properties of pyrrole. Reactions of electrophilic substitution,
			orientation of substitution. Features of reactions of nitration,
			sulfonation and bromination of acidophobic heterocycles.
			Hydrogenation of pyrrole and furan (pyrrolidine,
			tetrahydrofuran).
			Furfurol, semicarbazone 5-nitrofurfurol (furatsilin).

		Benzpyrrole (indole), tryptophan. Porphine as a stable
		tetrapyrrole aromatic system. 4.2. Five-membered aromatic heterocycles with two
		heteroatoms: pyrazole, imidazole. thiazole, oxazole as π -
		1.
		amphoteric systems. Electronic structure. The concept of a
		heteroatom of the pyridine type. Tautomerism of imidazole and pyrazole. Acid-base properties; association formation.
		Electrophilic substitution reactions in pyrazole and imidazole
		(nitration, sulfonation, halogenation). Reactions of
		nucleophilic substitution in thiazole (amination).
		Pyrazolone-5 and its tautomerism. Medicines based on
		pyrazolone-5: antipyrine, amidopyrine, analgin. Syntheses of
		antipyrine and amidopyrine based on diketene.
		Derivatives of imidazole; histidine, histamine, benzimidazole.
		dibazol.
		Thiazolidine. The idea of the structure of penicillin
		antibiotics.
		4.3. Azins. Structure, nomenclature. Pyridine, quinoline,
		isoquinoline as π -deficient systems. Basic properties.
		Electrophilic substitution reactions (sulfonation, nitration,
		halogenation). Deactivating effect of the pyridine nitrogen
		atom, substitution orientation in pyridine and quinoline.
		Nucleophilic substitution reactions (amination - Chichibabin
		reaction, hydroxylation). Lactim-lactam tautomerism of
		pyridine hydroxy derivatives. Nucleophilic properties of
		pyridine.
		Pyridine homologues: α -, β -, γ -picolines; their oxidation. Nicotinic and isonicotinic acids. Nicotinic acid amide
		(vitamin PP), isonicotinic acid hydrazide (isoniazid), ftivazid. Piperidine. Basic properties.
		Synthesis of quinoline according to Skraup. 8-
		Hydroxyquinoline (oxin) and its derivatives used in medicine.
		4.4. Piran group. Instability of α -, γ -pyrans.
		α -, γ -Pyrons. Pyrilium salts, their aromaticity. Benzopyrones:
		chromone, coumarin, flavone and their hydroxy derivatives.
		Flavonoids: luteolin, quercetype, rutin. Flavan and its
		hydroxy derivatives (catechins). Tocopherol (vitamin E).
		4.5. Six-membered heterocycles in two heteroatoms.
		Structure; nomenclature. Representatives of diazines:
		pyrimidine, pyrazine, pyridazine.
		Pyrimidine and its hydroxy- and amino derivatives: uracil,
		thymium, cytosine are components of nucleosides. Lactim-
		lactam tautomerism of nucleic bases. barbituric acid;
		production, lactim-lactam and keto-enol tautomerism, acid
		properties. Derivatives of barbituric acid: barbital,
		phenobarbital. Thiamine (vitamin B1).
		4.6. Condensed systems of heterocycles. Purine: aromaticity. Hydroxy- and amino derivatives of purine: hypoxanthine,
		xanthine, uric acid, adenine, guanine. Lactim-lactam
		tautomerism. Acid properties of uric acid, its salts (urates).
		Methylated xanthines: caffeine, theophylline. theobromine.
		Qualitative reactions of methylated xanthines.
		4.7. Nucleosides, nucleotides. Purine and pyrimidine
		nucleosides. Structure; nomenclature. The nature of the
	ı	

connection of the nucleic base with the carbohydrate residue.
Nucleotides. Structure; nomenclature of nucleoside
monophosphates. Nucleoside polyphosphates. relation to
hydrolysis.
Ribonucleic acids (RNA) and deoxyribonucleic acids (DNA).
The primary structure of nucleic acids.
4.8. Alkaloids. Chemical classification. Basic properties; salt
formation.
Alkaloids of the pyridine group: nicotine, anabazine.
Alkaloids of the quinoline group: quinine. Alkaloids of the
isoquinoline and isoquinoline-phenanthrene groups:
papaverine, morphine, codeine. Tropane group alkaloids:
atropine, cocaine. Connection of reactivity with the presence
of specific functional groups. Identification of alkaloids.

5. Volume of the academic discipline and types of academic work

Type of educational work	Labor i	ntensity	Labor intensity (AH) in	
	volume in	volume in	sen	nesters
	credit units (CU)	academic hours (AH)	3	4
Classroom work, including	5,6	202	108	94
Lectures (L)	1,67	60	28	32
Laboratory practicum (LP)*	3,94	142	80	62
Practicals (P)	-	-	-	-
Seminars (S)				
Student's individual work (SIW)	4,4	158	72	86
exam	1	36	-	36
TOTAL LABOR INTENSITY	11	396	180	216

6. Content of the academic discipline

6.1. Sections of the discipline and types of academic work:

Nº	No semes ter	Name of the section of the academic discipline	Types of academic work* (in AH)			Evaluation tools		
			L	LP	Р	S	SIW	
1	3	General concepts of organic chemistry. Structure and reactivity of hydrocarbons. Spatial structure of organic compounds.	20	80	-	50	150	Multiply choice tests, tests or colloquia, survey, exam

2	3, 4	Main classes of monofunctional organic compounds.	12	18	_	36	66	Multiply choice tests, tests or colloquia, laboratory works, survey, exam
3	4	Heterofunctional and natural compounds. Fundamentals of spectroscopy.	10	18	-	32	60	Multiply choice tests, tests or colloquia, laboratory works, survey, exam
4	4	heterocyclic compounds. Nucleic acids. Alkaloids.	18	26	-	40	84	Multiply choice tests, tests or colloquia, laboratory works, survey, exam
5	4	Exam					36	
		TOTAL	60	142	-	158	396	

* - L - lectures; LP - laboratory practicum; P - practicals; S - seminars; SIW - student's individual work.

6.2. Thematic schedule of educational work types:6.2.1 Thematic schedule of lectures

N⁰	Name of lecture topics	Volume in	n AH
		semester	semester
		3	4
1.	Organic chemistry as a basic discipline in the system of pharmaceutical education. Classification, nomenclature of organic compounds. Hybridization of the carbon atom, the structure of hydrocarbons. Covalent σ - and π -bonds, their formation and characteristics.	2	
2.	Fundamentals of stereochemistry of organic compounds. configurations and conformations. D,L-, R,S-, E,Z- rows.	2	
3.	Mutual influence of atoms in organic compounds. Inductive and mesomeric effects, classification of chemical reactions by type and mechanism.	2	
4.	Acid-base properties of organic compounds.	2	
5.	Reactivity of saturated hydrocarbons (alkanes, cycloalkanes).	2	
6.	Unsaturated hydrocarbons (alkenes, alkynes, alkodienes).	2	
7.	Reactivity of aromatic hydrocarbons (mononuclear and polynuclear arenes).	2	

8.	Reactivity, structure, production of halogen derivatives of	2	
	hydrocarbons. Reactions of nucleophilic substitution and		
	elimination.		
9.	Reactivity of alcohols and phenols.	2	
10.	Thiols and thiophenols. Ethers and their thio analogues.	2	
11.	Carbonyl compounds (aldehydes and ketones).	2	
12.	Reactivity of carboxylic acids.	2	
13.	Reactivity of dicarboxylic acids. Features of malonic acid and its	2	
	ester.		
14.	Functional derivatives of carboxylic acids. Complex ethers.	2	
	Saponifiable lipids.		
15.	Functional derivatives of carboxylic acids. Amides. Nitriles.		2
	Acid halides. Anhydrides. Hydrazines.		
16.	Carbonic acid and its derivatives. Sulfonic acids.		2
17.	Amines. Gets and properties.		1
18.	Diazo and azo compounds.		1
19.	Modern physico-chemical methods for establishing the structure.		4
20.	Electronic spectroscopy. infrared spectroscopy. Spectroscopy of		
	nuclear magnetic resonance. Mass spectroscopy. Raman		
	Spectroscopy. Radiography, electronography.		
21.	Heterofunctional organic compounds. Spatial isomerism.		4
22.			
23.	Amino acids. Squirrels.		2
24.	Carbohydrates. Monosaccharides.		4
25.			
26.	Carbohydrates. Di-, poly- and heterosaccharides.		2
27.	Biologically active five-membered heterocyclic compounds with		2
	one and two heteroatoms.		
28.	Biologically active six-membered heterocyclic compounds with		2
	one and two heteroatoms.		
29.	Nucleic bases. Nucleosides. Nucleotides. Nucleic acids.		2
30.	Terpenes. Terpenoids. Steroids. Steroid hormones. Alkaloids.		2
	TOTAL (60 AH)	28	32

6.2.2. The thematic plan of laboratory practicums

N⁰	Name of laboratory practicums	Volume in	n AH
		Semester	Semester 4
		3	
1.	Classification, nomenclature of organic compounds. configurations and conformations. D,L-, R,S-, E,Z- rows.	4.2	
2.	Hybridization of carbon atoms. Types of chemical bonds in organic compounds. Fundamentals of stereochemistry of organic compounds.	4.2	
3.	Mutual influence of atoms in molecules of organic compounds. Inductive and mesomeric effects. Conjugation, types of conjugation.	4.2	
4.	Acid-base properties of organic compounds. Nucleophiles. Stability and basicity of nucleophiles. Factors affecting nucleophilicity	4.2	
5.	Control work or colloquium	4.2	

6.	Tripling, nomenclature, isomerism and reactivity of alkanes and cycloalkanes. Laboratory work.	4.2	
7.	Unsaturated compounds. Alkenes, alkynes, alkodienes. Structure, isomerism and reactivity. Reactions of electrophilic	4.2	
0	and radical addition. Laboratory work.		
8.	Aromatic hydrocarbons. Aromaticity of benzene homologues and polynuclear arenes. arena properties. Reactions of electrophilic substitution. Laboratory work.	4.2	
9.	Test or colloquium	4.2	
10.	Halogen derivatives of hydrocarbons. Reactions of nucleophilic substitution and elimination. Laboratory work.	4.2	
11.	Hydroxy derivatives. Alcohols and phenols. Thiols, thiophenols. Laboratory work.	4.2	
12.	Ethers and thioethers. Laboratory work.	4.2	
13.	Test or colloquium	4.2	
14.	Carbonyl compounds (aldehydes and ketones). Reactions of nucleophilic addition-elimination. Laboratory work.	4.2	
15.	Carboxylic acids. dicarboxylic acids. Synthesis from ester of malonic acid. Laboratory work.	4.2	
16.	Functional derivatives of carboxylic acids. Carbonic acid. Sulfonic acids. Aliphatic and aromatic. Laboratory work.	4.2	
17.	Azo and diazo compounds. Amines. Amino acids. Squirrels. Laboratory work. Test or colloquium	4.2	
18.	Obtaining bromoethane.	4.2	
19.	Obtaining benzoic acid.	4.2	
1.	Monosaccharides.		3.4
2.	Monosaccharides.		3.4
3.	Oligo- and polysaccharides. Laboratory work.		3.4
4.	colloquium		3.4
5.	Terpenes and terpenoids.		3.4
6.	Abstract protection		3.4
7.	Steroids.		3.4
8.	Abstract protection		3.4
9.	Abstract protection		3.4
). 10.	Five-membered heterocyclic compounds		3.4
10.	Six-membered heterocyclic compounds.		3.4
$\frac{11.}{12.}$	Condensed heterocyclic compounds.		3.4
$\frac{12.}{13.}$	Nucleosides, nucleotides, nucleic acids Laboratory work.		3.4
13. 14.	Abstract protection		3.4
1 4 . 15.	Test or colloquiumAlkaloids of the pyridine group. Quinoline group alkaloids		3.4
16.	Alkaloids of the pyridine group. Quinoline group alkaloids		3.4
17.	Spectral characteristics of organic compounds. Abstract protection		3.4
18.	Spectral characteristics of organic compounds. Abstract protection		3.4
	TOTAL (total 142 AH)	80	62

6.2.3. Thematic plan of practicals: not provided for. 6.2.4. Thematic plan of seminars: not provided for. 6.2.5. Types and topics of student's individual work (SIW)

N⁰	Types and topics of SIW	Volum	e in AH	
		Semester Semester		
		3	4	
1.	work with lecture material, providing for the development of	20	23	
	lecture notes and educational literature,			
	work with electronic literature;			
2.	doing homework for class;	15	20	
3.	preparation for control work;	15	20	
4.	preparation for testing online; preparation for testing online;			
5.	work with Internet resources, including for the preparation of the	22	23	
	report.			
	TOTAL (total -158 AH)	72	86	

6.2.6. Student's research work:

N⁰	Student's research work:	Semester
1.	Acid-base properties of organic compounds. Theories of Bronsted and Lewis. Types of organic acids (OH, SH, NH, CH-acids) and bases (π -bases, n-bases).	3, 4
2	Conformations. The emergence of conformations as a result of rotation around σ -bonds; factors that hinder rotation. Newman's projection formulas. Relationship of spatial structure with biological activity.	
3	Regioselectivity of radical substitution reactions in alkanes.	
4	Fluorocarbons. Features of obtaining and chemical properties. The use of fluorocarbons.	
5	Halogenated hydrocarbons used in medicine: ethyl chloride, iodoform, halothane. Chemical properties used to identify these compounds.	
6	Limit and unsaturated monohydric alcohols: comparison of production methods and properties. Application in medicine and national economy.Thiols: obtaining, properties. Identification of thiols.	
7	Thiols: obtaining, properties. Identification of thiols.	
8	Ethers and sulfides: a comparison of methods of preparation and chemical properties. Identification methods.	
9	Dioxins as by-products of phenol processing, environmental problems of phenol chemistry.	
10	Comparison of production methods and chemical properties of mono- and dibasic carboxylic acids.	
11	Waxes as esters of higher carboxylic acids. Beeswax, spermaceti. Twins: structure, properties, application.	
12	Phospholipids: structure, properties, biological significance.	
13	Carbonic acid and its functional derivatives. Phosgene, chlorocarbon	
	ether, carbamic acid and its esters (urethanes). Urea, ureido acids and ureides of acids. Methods for the determination of urea.	
14	Sulfonic acids: methods of obtaining and properties. Desulfurization of	
14	aromatic compounds. Nucleophilic substitution in arenesulfonic acids:	
	obtaining phenols and functional derivatives.	
15	Heterofunctional derivatives of benzene - the founders of drugs.	
	Relationship between structure and pharmacological action.	
16	Glucose as a starting material for the production of sorbitol, calcium	

	gluconate, ascorbic acid. Physical and chemical methods for
	identification of glucose and products of its transformation.
17	Synthetic possibilities of Skraup's synthesis - obtaining quinoline and
	its derivatives.
18	The concept of π -redundancy and π -deficiency in the chemistry of
	heterocyclic compounds.
19	Proteins are the molecules of life: structure, biological role, chemical
	properties, some hormones and antibiotics as derivatives of peptides.
20	The phenomenon of tautomerism in organic chemistry: keto-enol,
	lactim-lactam, cyclo-oxotautomerism. The reasons. Peculiarities of
	chemical properties of different tautomeric forms.
21	Asymmetry of biological molecules.
22	Heterofunctional derivatives of aromatic compounds are the founders
	of medicines.

7. Types of assessment formats for ongoing monitoring and mid-term assessment

Nº	Se mes ter No.	Types of control	Name of section of academic discipline	Competence codes	types	numb er of test
					types	questi ons
1.	3	Current monitoring	Fundamentals of the structure and general laws of the reactivity of organic compounds.	1, 2, 3- Current testing. Testing practical skills. test or colloquium	4	15
2.	3	Current monitoring	Reactivity of hydrocarbons.	 1 - Current testing. Oral individual survey. 2 - Current testing. Test work or colloquium. 3 - Current testing. Oral individual survey. 	5	15
3.	3	Current monitoring	Alcohols, phenols, ethers and their thioanalogues.	 1 - Current testing. Oral individual survey. 2 - Current testing. Test work or colloquium. 3 - Current testing. Oral individual survey. 	5	13
4.	3	Current monitoring	carbonyl compounds. Carboxylic acids and their derivatives.	 1 - Current testing. Oral individual survey. 2 - Current testing. Test work or colloquium. 	5	15

	1			1	r	
				3 - Current testing.		
				Oral individual survey.		
5.	4	Current	Carboxylic (mono-,	1 - Current testing.	4	15
		monitoring	di- and	Oral individual survey.		
			heterofunctional)	2 - Current testing.		
			acids.	Test work or		
				colloquium.		
				3 - Current testing.		
				Oral individual survey.		
6.	4	Current	Carbohydrates:	1 - Current testing.	4	15
		monitoring	mono-, di- and	Oral individual survey.		
			polysaccharides.	2 - Current testing.		
				Test work or		
				colloquium.		
				3 - Current testing.		
				Oral individual survey.		
7.	4	Current	heterocyclic	1 - Current testing.	4	15
		monitoring	compounds.	Oral individual survey.		
			Nucleosides,	2 - Current testing.		
			nucleotides, nucleic	Test work or		
			acids.	colloquium.		
				3 - Current testing.		
				Oral individual survey.		
8.		Exam	All topics	Computer testing	12	60
	4		-			(option
						is
						formed
						by
						random
						sampli
						ng)
				Exam cards	3	30

8. Educational, methodological and informational support for mastering the academic discipline (printed, electronic publications, the Internet and other network resources)

8.1. Key literature references

N⁰	Name according to bibliographic requirements	Number of copies	
		at the	in the library
		department	
1.	Zurabyan S.E. Fundamentals of bioorganic	-	50
	chemistry:Textbook for medical students Moscow		
	2003,2006.: GEOTAR-MED,-320p.		
2.	Ebbing, D. D. General Chemistry / D. D. Ebbing, S. D.	-	50
	Gammon. – 11th ed. – Australia : Cengage Learning,		
	2019. – 864 p. : il. – ISBN 978-1-3055-8034-3.		
3.	Zimina, S. V. General chemistry : practical manual / S.	-	61
	V. Zimina, A. S. Gordetsov, I. V. Zhdanovich;		
	Privolzhsky Research Medikal University, . – N.		
	Novgorod : Publishing House of the Privolzhsky		

	Research Medikal University, 2018. – 194 p.		
4.	Zimina, S. V. Chemistry : practical manual / S. V.	-	299
	Zimina, A. S. Gordetsov, I. V. Zhdanovich. – N.		
	Novgorod : Publishing House of PRMU, 2019. – 194		
	р.		
5.	Silberberg, M. S. Principles of general chemistry / M.	-	52
	S. Silberberg ; Silberberg Martin S. – 2nd ed. – Boston		
	: McGraw-Hill Higher Education, 2007. – 891 c. : il. –		
	ISBN 978-0-07-017263-0.		
6.	Lister, T. New understanding chemistry for advanced	-	50
	level / T. Lister, J. Renshaw ; Lister, Ted ; Renshaw,		
	Janet. – 3d ed. – Nelson thornes, 2000. – 680 c. : –		
	ISBN 0-7487-3958-0.		

8.2. Further reading:

8.3. Electronic educational resources for teaching academic subjects8.3.1. Internal Electronic Library System of the University (IELSU)

N⁰	Name of the electronic resource	Brief description (content)	Access conditions	Number of users
	resourceGeneral chemistry :practical manual / S. V.Zimina, A. S. Gordetsov,Nizhny Novgorod StateMedical Academy, I. V.Zhdanovich ; Zimina, S.V. ; Zhdanovich, I. V. ;Gordetsov, A. S. ;Nizhny Novgorod StateMedical Academy. – N.Novgorod :NizhnyNovgorod StateMedical Academy. – N.Novgorod StateMedical Academy. – N.		<i>conditions</i> Free	90
	Academy, 2008. – Text : electronic.			

8.3.2. Electronic educational resources acquired by the University

N⁰	Name of the electronic	Brief description	Access	Number of users
	resource	(content)	conditions	
1.	International	Web of Science covers	Free access from	Free access from
	scientometric database	materials on natural,	PIMU	PIMU computers
	"Web of Science Core	technical, social,	computers	
	Collection"	humanities; takes into	[Electronic	
		account the mutual	resource] -	
		citation of publications	Access to the	
		developed and provided	resource at:	
		by Thomson Reuters;	http://apps.webo	
		has built-in search,	fknowledge.com	
		analysis and		
		management of		
		bibliographic		
		information.		

0.5.5	Open access resources		
N⁰	Name of the electronic resource	Brief description (content)	Access conditions
1.	Federal Electronic Medical Library (FEMB)	Includes electronic analogues of printed publications and original electronic publications that have no analogues recorded on other media (dissertations, abstracts, books, magazines, etc.). [Electronic resource] – Access mode: http://Hэб.pф/	from any computer on the Internet
2.	Scientific electronic library eLIBRARY.RU	The largest Russian information portal in the field of science, technology, medicine and education, containing abstracts and full texts of scientific articles and publications. [Electronic resource] - Access mode: https://elibrary.ru/	from any computer on the Internet
3.	Scientific electronic library of open access CyberLeninka	Full texts of scientific articles with annotations published in scientific journals in Russia and neighboring countries. [Electronic resource] - Access mode: https://cyberleninka.ru/	from any computer on the Internet

8.3.3 Open access resources

9. Material and technical support for mastering an academic discipline

- 9.1. List of premises for classroom activities for the discipline
- 1. Lecture hall equipped with multimedia equipment and a microphone.
- 2. Rooms for laboratory workshops.

9.2. List of equipment for classroom activities for the discipline

- 1. Multimedia complex (computer and projection equipment)
- 2. Information stands.
- 3. Tables and directories.
- 4. Slides and multimedia presentations of lectures.
- 5. Chemical glassware (burettes, pipettes, flasks, glasses, refrigerators, chemical reagents).
- 6. Chemical reagents.
- 7. Hood.
- 8. Spirit lamps.
- 9. Electric stoves.
- 10. Analytical balance.
- 11. Water bath.
- 12. Test tube racks.
- 13. Reagent racks.
- 14. Magnetic stirrers..

Ite m no.	Software	number of licenses	Type of software	Manufactur er	Number in the unified register of Russian software	Contract No. and date
1	Wtware	100	Thin Client Operating System	Kovalev Andrey Alexandrovi ch	1960	2471/05-18 from 28.05.2018
2	MyOffice is Standard. A corporate user license for educational organizations, with no expiration date, with the right to receive updates for 1 year.	220	Office Application	LLC "NEW CLOUD TECHNOL OGIES"	283	without limitation, with the right to receive updates for 1 year.
3	LibreOffice		Office Application	The Document Foundation	Freely distributed software	
4	Windows 10 Education	700	Operating systems	Microsoft	Azure Dev Tools for Teaching Subscripti on	
5	Yandex. Browser		Browser	«Yandex»	3722	
6	Subscription to MS Office Pro for 170 PCs for FGBOU VO "PIMU" of the Ministry of Health of Russia	170	Office Application	Microsoft		23618/HN10 030 LLC "Softline Trade" from 04.12.2020

9.3. A set of licensed and freely distributed software, including domestic production

10. List of changes to the working program (to be filled out by the template)

Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" Ministry of Health of the Russian Federation (FSBEI HE "PRMU" of the Ministry of Health of Russia)

Department of General Chemistry

CHANGE REGISTRATION SHEET

working program for the academic discipline Organic Chemistry

Field of study / specialty / scientific specialty: 33.05.01 "PHARMACY"

Training profile: PHARMACIST

Mode of study: Full-time

Position	Number and name of the program section	Contents of the changes made	Effective date of the changes	Contributor's signature
1				

Approved at the department meeting Protocol No. 1, of August 26, 2020

Head of the Department of General Chemistry, Doctor of Chemistry, Professor Gordetsov A.S

/Gordetsov A.S./